Files
tbd-station-14/Content.Server/Solar/EntitySystems/PowerSolarSystem.cs

186 lines
7.1 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using Content.Server.Power.Components;
using Content.Server.Solar.Components;
using Content.Shared.Physics;
using Content.Shared.GameTicking;
using JetBrains.Annotations;
using Robust.Shared.GameObjects;
using Robust.Shared.IoC;
using Robust.Shared.Maths;
using Robust.Shared.Physics;
using Robust.Shared.Random;
namespace Content.Server.Solar.EntitySystems
{
/// <summary>
/// Responsible for maintaining the solar-panel sun angle and updating <see cref='SolarPanelComponent'/> coverage.
/// </summary>
[UsedImplicitly]
internal sealed class PowerSolarSystem : EntitySystem
{
[Dependency] private readonly IRobustRandom _robustRandom = default!;
[Dependency] private readonly SharedPhysicsSystem _physicsSystem = default!;
/// <summary>
/// Maximum panel angular velocity range - used to stop people rotating panels fast enough that the lag prevention becomes noticable
/// </summary>
public const float MaxPanelVelocityDegrees = 1f;
/// <summary>
/// The current sun angle.
/// </summary>
public Angle TowardsSun = Angle.Zero;
/// <summary>
/// The current sun angular velocity. (This is changed in Initialize)
/// </summary>
public Angle SunAngularVelocity = Angle.Zero;
/// <summary>
/// The distance before the sun is considered to have been 'visible anyway'.
/// This value, like the occlusion semantics, is borrowed from all the other SS13 stations with solars.
/// </summary>
public float SunOcclusionCheckDistance = 20;
/// <summary>
/// TODO: *Should be moved into the solar tracker when powernet allows for it.*
/// The current target panel rotation.
/// </summary>
public Angle TargetPanelRotation = Angle.Zero;
/// <summary>
/// TODO: *Should be moved into the solar tracker when powernet allows for it.*
/// The current target panel velocity.
/// </summary>
public Angle TargetPanelVelocity = Angle.Zero;
/// <summary>
/// TODO: *Should be moved into the solar tracker when powernet allows for it.*
/// Last update of total panel power.
/// </summary>
public float TotalPanelPower = 0;
/// <summary>
/// Queue of panels to update each cycle.
/// </summary>
private readonly Queue<SolarPanelComponent> _updateQueue = new();
public override void Initialize()
{
SubscribeLocalEvent<SolarPanelComponent, MapInitEvent>(OnMapInit);
SubscribeLocalEvent<RoundRestartCleanupEvent>(Reset);
RandomizeSun();
}
public void Reset(RoundRestartCleanupEvent ev)
{
RandomizeSun();
TargetPanelRotation = Angle.Zero;
TargetPanelVelocity = Angle.Zero;
TotalPanelPower = 0;
}
private void RandomizeSun()
{
// Initialize the sun to something random
TowardsSun = MathHelper.TwoPi * _robustRandom.NextDouble();
SunAngularVelocity = Angle.FromDegrees(0.1 + ((_robustRandom.NextDouble() - 0.5) * 0.05));
}
private void OnMapInit(EntityUid uid, SolarPanelComponent component, MapInitEvent args)
{
UpdateSupply(uid, component);
}
public override void Update(float frameTime)
{
TowardsSun += SunAngularVelocity * frameTime;
TowardsSun = TowardsSun.Reduced();
TargetPanelRotation += TargetPanelVelocity * frameTime;
TargetPanelRotation = TargetPanelRotation.Reduced();
if (_updateQueue.Count > 0)
{
var panel = _updateQueue.Dequeue();
if (panel.Running)
UpdatePanelCoverage(panel);
}
else
{
TotalPanelPower = 0;
foreach (var panel in EntityManager.EntityQuery<SolarPanelComponent>())
{
TotalPanelPower += panel.MaxSupply * panel.Coverage;
panel.Owner.Transform.WorldRotation = TargetPanelRotation;
_updateQueue.Enqueue(panel);
}
}
}
private void UpdatePanelCoverage(SolarPanelComponent panel) {
IEntity entity = panel.Owner;
// So apparently, and yes, I *did* only find this out later,
// this is just a really fancy way of saying "Lambert's law of cosines".
// ...I still think this explaination makes more sense.
// In the 'sunRelative' coordinate system:
// the sun is considered to be an infinite distance directly up.
// this is the rotation of the panel relative to that.
// directly upwards (theta = 0) = coverage 1
// left/right 90 degrees (abs(theta) = (pi / 2)) = coverage 0
// directly downwards (abs(theta) = pi) = coverage -1
// as TowardsSun + = CCW,
// panelRelativeToSun should - = CW
var panelRelativeToSun = entity.Transform.WorldRotation - TowardsSun;
// essentially, given cos = X & sin = Y & Y is 'downwards',
// then for the first 90 degrees of rotation in either direction,
// this plots the lower-right quadrant of a circle.
// now basically assume a line going from the negated X/Y to there,
// and that's the hypothetical solar panel.
//
// since, again, the sun is considered to be an infinite distance upwards,
// this essentially means Cos(panelRelativeToSun) is half of the cross-section,
// and since the full cross-section has a max of 2, effectively-halving it is fine.
//
// as for when it goes negative, it only does that when (abs(theta) > pi)
// and that's expected behavior.
float coverage = (float)Math.Max(0, Math.Cos(panelRelativeToSun));
if (coverage > 0)
{
// Determine if the solar panel is occluded, and zero out coverage if so.
var ray = new CollisionRay(entity.Transform.WorldPosition, TowardsSun.ToWorldVec(), (int) CollisionGroup.Opaque);
var rayCastResults = _physicsSystem.IntersectRayWithPredicate(
entity.Transform.MapID,
ray,
SunOcclusionCheckDistance,
e => !e.Transform.Anchored || e == entity);
if (rayCastResults.Any())
coverage = 0;
}
// Total coverage calculated; apply it to the panel.
panel.Coverage = coverage;
UpdateSupply(panel.OwnerUid, panel);
}
public void UpdateSupply(
EntityUid uid,
SolarPanelComponent? solar = null,
PowerSupplierComponent? supplier = null)
{
if (!Resolve(uid, ref solar, ref supplier))
{
return;
}
supplier.MaxSupply = (int) (solar.MaxSupply * solar.Coverage);
}
}
}