Files
tbd-station-14/Content.Server/NPC/Pathfinding/PathfindingSystem.AStar.cs
2022-12-06 15:33:44 -08:00

151 lines
4.8 KiB
C#

using Content.Shared.NPC;
using Robust.Shared.Map;
using Robust.Shared.Utility;
namespace Content.Server.NPC.Pathfinding;
public sealed partial class PathfindingSystem
{
private PathResult UpdateAStarPath(AStarPathRequest request)
{
if (request.Start.Equals(request.End))
{
return PathResult.Path;
}
if (request.Task.IsCanceled)
{
return PathResult.NoPath;
}
// TODO: Need partial planning that uses best node.
PathPoly? currentNode = null;
// First run
if (!request.Started)
{
request.Frontier = new PriorityQueue<(float, PathPoly)>(PathPolyComparer);
request.Started = true;
}
// Re-validate nodes
else
{
// Theoretically this shouldn't be happening, but practically...
if (request.Frontier.Count == 0)
{
return PathResult.NoPath;
}
(_, currentNode) = request.Frontier.Peek();
if (!currentNode.IsValid())
{
return PathResult.NoPath;
}
// Re-validate parents too.
if (request.CameFrom.TryGetValue(currentNode, out var parentNode) && !parentNode.IsValid())
{
return PathResult.NoPath;
}
}
DebugTools.Assert(!request.Task.IsCompleted);
request.Stopwatch.Restart();
var startNode = GetPoly(request.Start);
var endNode = GetPoly(request.End);
if (startNode == null || endNode == null)
{
return PathResult.NoPath;
}
currentNode = startNode;
request.Frontier.Add((0.0f, startNode));
request.CostSoFar[startNode] = 0.0f;
var count = 0;
var arrived = false;
while (request.Frontier.Count > 0 && count < NodeLimit)
{
// Handle whether we need to pause if we've taken too long
if (count % 20 == 0 && count > 0 && request.Stopwatch.Elapsed > PathTime)
{
// I had this happen once in testing but I don't think it should be possible?
DebugTools.Assert(request.Frontier.Count > 0);
return PathResult.Continuing;
}
count++;
// Actual pathfinding here
(_, currentNode) = request.Frontier.Take();
// If we're inside the required distance OR we're at the end node.
if ((request.Distance > 0f &&
currentNode.Coordinates.TryDistance(EntityManager, request.End, out var distance) &&
distance <= request.Distance) ||
currentNode.Equals(endNode))
{
arrived = true;
break;
}
foreach (var neighbor in currentNode.Neighbors)
{
var tileCost = GetTileCost(request, currentNode, neighbor);
if (tileCost.Equals(0f))
{
continue;
}
// f = g + h
// gScore is distance to the start node
// hScore is distance to the end node
var gScore = request.CostSoFar[currentNode] + tileCost;
if (request.CostSoFar.TryGetValue(neighbor, out var nextValue) && gScore >= nextValue)
{
continue;
}
request.CameFrom[neighbor] = currentNode;
request.CostSoFar[neighbor] = gScore;
// pFactor is tie-breaker where the fscore is otherwise equal.
// See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#breaking-ties
// There's other ways to do it but future consideration
// The closer the fScore is to the actual distance then the better the pathfinder will be
// (i.e. somewhere between 1 and infinite)
// Can use hierarchical pathfinder or whatever to improve the heuristic but this is fine for now.
var hScore = OctileDistance(endNode, neighbor) * (1.0f + 1.0f / 1000.0f);
var fScore = gScore + hScore;
request.Frontier.Add((fScore, neighbor));
}
}
if (!arrived)
{
return PathResult.NoPath;
}
var route = ReconstructPath(request.CameFrom, currentNode);
var path = new Queue<EntityCoordinates>(route.Count);
foreach (var node in route)
{
// Due to partial planning some nodes may have been invalidated.
if (!node.IsValid())
{
return PathResult.NoPath;
}
path.Enqueue(node.Coordinates);
}
DebugTools.Assert(route.Count > 0);
request.Polys = route;
return PathResult.Path;
}
}