Files
tbd-station-14/Content.Server/AI/Pathfinding/PathfindingHelpers.cs
Alex Evgrashin a3f16295ea Move Access to ECS (#4826)
* Moved access to ecs

* Fixed tests

* Moved test to integration

* Better IoC

* Moved preset ID card

* Moved id card to ECS

* Moved access component to ECS

* Fixed pda access

* Final touches

Co-authored-by: metalgearsloth <31366439+metalgearsloth@users.noreply.github.com>
2021-10-22 13:31:07 +11:00

356 lines
13 KiB
C#

using System;
using System.Collections.Generic;
using Content.Server.Access.Systems;
using Content.Server.AI.Pathfinding.Accessible;
using Content.Server.AI.Pathfinding.Pathfinders;
using Robust.Shared.GameObjects;
using Robust.Shared.IoC;
using Robust.Shared.Map;
using Robust.Shared.Maths;
namespace Content.Server.AI.Pathfinding
{
public static class PathfindingHelpers
{
public static bool TryEndNode(ref PathfindingNode endNode, PathfindingArgs pathfindingArgs)
{
if (!Traversable(pathfindingArgs.CollisionMask, pathfindingArgs.Access, endNode))
{
if (pathfindingArgs.Proximity > 0.0f)
{
foreach (var node in BFSPathfinder.GetNodesInRange(pathfindingArgs, false))
{
endNode = node;
return true;
}
}
return false;
}
return true;
}
public static bool DirectionTraversable(int collisionMask, ICollection<string> access, PathfindingNode currentNode, Direction direction)
{
// If it's a diagonal we need to check NSEW to see if we can get to it and stop corner cutting, NE needs N and E etc.
// Given there's different collision layers stored for each node in the graph it's probably not worth it to cache this
// Also this will help with corner-cutting
PathfindingNode? northNeighbor = null;
PathfindingNode? southNeighbor = null;
PathfindingNode? eastNeighbor = null;
PathfindingNode? westNeighbor = null;
foreach (var neighbor in currentNode.GetNeighbors())
{
if (neighbor.TileRef.X == currentNode.TileRef.X &&
neighbor.TileRef.Y == currentNode.TileRef.Y + 1)
{
northNeighbor = neighbor;
continue;
}
if (neighbor.TileRef.X == currentNode.TileRef.X + 1 &&
neighbor.TileRef.Y == currentNode.TileRef.Y)
{
eastNeighbor = neighbor;
continue;
}
if (neighbor.TileRef.X == currentNode.TileRef.X &&
neighbor.TileRef.Y == currentNode.TileRef.Y - 1)
{
southNeighbor = neighbor;
continue;
}
if (neighbor.TileRef.X == currentNode.TileRef.X - 1 &&
neighbor.TileRef.Y == currentNode.TileRef.Y)
{
westNeighbor = neighbor;
continue;
}
}
switch (direction)
{
case Direction.NorthEast:
if (northNeighbor == null || eastNeighbor == null) return false;
if (!Traversable(collisionMask, access, northNeighbor) ||
!Traversable(collisionMask, access, eastNeighbor))
{
return false;
}
break;
case Direction.NorthWest:
if (northNeighbor == null || westNeighbor == null) return false;
if (!Traversable(collisionMask, access, northNeighbor) ||
!Traversable(collisionMask, access, westNeighbor))
{
return false;
}
break;
case Direction.SouthWest:
if (southNeighbor == null || westNeighbor == null) return false;
if (!Traversable(collisionMask, access, southNeighbor) ||
!Traversable(collisionMask, access, westNeighbor))
{
return false;
}
break;
case Direction.SouthEast:
if (southNeighbor == null || eastNeighbor == null) return false;
if (!Traversable(collisionMask, access, southNeighbor) ||
!Traversable(collisionMask, access, eastNeighbor))
{
return false;
}
break;
}
return true;
}
public static bool Traversable(int collisionMask, ICollection<string> access, PathfindingNode node)
{
if ((collisionMask & node.BlockedCollisionMask) != 0)
{
return false;
}
var accessSystem = EntitySystem.Get<AccessReaderSystem>();
foreach (var reader in node.AccessReaders)
{
if (!accessSystem.IsAllowed(reader, access))
{
return false;
}
}
return true;
}
public static Queue<TileRef> ReconstructPath(Dictionary<PathfindingNode, PathfindingNode> cameFrom, PathfindingNode current)
{
var running = new Stack<TileRef>();
running.Push(current.TileRef);
while (cameFrom.ContainsKey(current))
{
var previousCurrent = current;
current = cameFrom[current];
cameFrom.Remove(previousCurrent);
running.Push(current.TileRef);
}
var result = new Queue<TileRef>(running);
return result;
}
/// <summary>
/// This will reconstruct the path and fill in the tile holes as well
/// </summary>
/// <param name="cameFrom"></param>
/// <param name="current"></param>
/// <returns></returns>
public static Queue<TileRef> ReconstructJumpPath(Dictionary<PathfindingNode, PathfindingNode> cameFrom, PathfindingNode current)
{
var running = new Stack<TileRef>();
running.Push(current.TileRef);
while (cameFrom.ContainsKey(current))
{
var previousCurrent = current;
current = cameFrom[current];
var intermediate = previousCurrent;
cameFrom.Remove(previousCurrent);
var pathfindingSystem = IoCManager.Resolve<IEntitySystemManager>().GetEntitySystem<PathfindingSystem>();
var mapManager = IoCManager.Resolve<IMapManager>();
var grid = mapManager.GetGrid(current.TileRef.GridIndex);
// Get all the intermediate nodes
while (true)
{
var xOffset = 0;
var yOffset = 0;
if (intermediate.TileRef.X < current.TileRef.X)
{
xOffset += 1;
}
else if (intermediate.TileRef.X > current.TileRef.X)
{
xOffset -= 1;
}
else
{
xOffset = 0;
}
if (intermediate.TileRef.Y < current.TileRef.Y)
{
yOffset += 1;
}
else if (intermediate.TileRef.Y > current.TileRef.Y)
{
yOffset -= 1;
}
else
{
yOffset = 0;
}
intermediate = pathfindingSystem.GetNode(grid.GetTileRef(
new Vector2i(intermediate.TileRef.X + xOffset, intermediate.TileRef.Y + yOffset)));
if (intermediate.TileRef != current.TileRef)
{
// Hacky corner cut fix
running.Push(intermediate.TileRef);
continue;
}
break;
}
running.Push(current.TileRef);
}
var result = new Queue<TileRef>(running);
return result;
}
public static float OctileDistance(int dstX, int dstY)
{
if (dstX > dstY)
{
return 1.4f * dstY + (dstX - dstY);
}
return 1.4f * dstX + (dstY - dstX);
}
public static float OctileDistance(PathfindingNode endNode, PathfindingNode currentNode)
{
// "Fast Euclidean" / octile.
// This implementation is written down in a few sources; it just saves doing sqrt.
int dstX = Math.Abs(currentNode.TileRef.X - endNode.TileRef.X);
int dstY = Math.Abs(currentNode.TileRef.Y - endNode.TileRef.Y);
if (dstX > dstY)
{
return 1.4f * dstY + (dstX - dstY);
}
return 1.4f * dstX + (dstY - dstX);
}
public static float OctileDistance(TileRef endTile, TileRef startTile)
{
// "Fast Euclidean" / octile.
// This implementation is written down in a few sources; it just saves doing sqrt.
int dstX = Math.Abs(startTile.X - endTile.X);
int dstY = Math.Abs(startTile.Y - endTile.Y);
if (dstX > dstY)
{
return 1.4f * dstY + (dstX - dstY);
}
return 1.4f * dstX + (dstY - dstX);
}
public static float ManhattanDistance(PathfindingNode endNode, PathfindingNode currentNode)
{
return Math.Abs(currentNode.TileRef.X - endNode.TileRef.X) + Math.Abs(currentNode.TileRef.Y - endNode.TileRef.Y);
}
public static float? GetTileCost(PathfindingArgs pathfindingArgs, PathfindingNode start, PathfindingNode end)
{
if (!pathfindingArgs.NoClip && !Traversable(pathfindingArgs.CollisionMask, pathfindingArgs.Access, end))
{
return null;
}
if (!pathfindingArgs.AllowSpace && end.TileRef.Tile.IsEmpty)
{
return null;
}
var cost = 1.0f;
switch (pathfindingArgs.AllowDiagonals)
{
case true:
cost *= OctileDistance(end, start);
break;
// Manhattan distance
case false:
cost *= ManhattanDistance(end, start);
break;
}
return cost;
}
public static Direction RelativeDirection(PathfindingChunk endChunk, PathfindingChunk startChunk)
{
var xDiff = (endChunk.Indices.X - startChunk.Indices.X) / PathfindingChunk.ChunkSize;
var yDiff = (endChunk.Indices.Y - startChunk.Indices.Y) / PathfindingChunk.ChunkSize;
return RelativeDirection(xDiff, yDiff);
}
public static Direction RelativeDirection(PathfindingNode endNode, PathfindingNode startNode)
{
var xDiff = endNode.TileRef.X - startNode.TileRef.X;
var yDiff = endNode.TileRef.Y - startNode.TileRef.Y;
return RelativeDirection(xDiff, yDiff);
}
public static Direction RelativeDirection(int x, int y)
{
switch (x)
{
case -1:
switch (y)
{
case -1:
return Direction.SouthWest;
case 0:
return Direction.West;
case 1:
return Direction.NorthWest;
default:
throw new InvalidOperationException();
}
case 0:
switch (y)
{
case -1:
return Direction.South;
case 0:
throw new InvalidOperationException();
case 1:
return Direction.North;
default:
throw new InvalidOperationException();
}
case 1:
switch (y)
{
case -1:
return Direction.SouthEast;
case 0:
return Direction.East;
case 1:
return Direction.NorthEast;
default:
throw new InvalidOperationException();
}
default:
throw new InvalidOperationException();
}
}
}
}