Files
tbd-station-14/Content.Server/Atmos/EntitySystems/AtmosphereSystem.Superconductivity.cs
drakewill-CRL 7cf04dcb20 Use archived gas mixture in gas exchange comparison (#32088)
The comparison for doing gas exchange used current and not archived
moles. This could lead to update order-dependent gas spreading effects.

To fix this, convert TileAtmosphere's MolesArchived and
TemperatureArchived to a AirArchived, and use that in the comparison
method.

---------

Co-authored-by: PraxisMapper <praxismapper@gmail.com>
Co-authored-by: Kevin Zheng <kevinz5000@gmail.com>
2024-09-29 22:14:07 -07:00

170 lines
6.5 KiB
C#

using Content.Server.Atmos.Components;
using Content.Shared.Atmos;
using Robust.Shared.Map.Components;
namespace Content.Server.Atmos.EntitySystems
{
public sealed partial class AtmosphereSystem
{
private void Superconduct(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile)
{
var directions = ConductivityDirections(gridAtmosphere, tile);
for(var i = 0; i < Atmospherics.Directions; i++)
{
var direction = (AtmosDirection) (1 << i);
if (!directions.IsFlagSet(direction))
continue;
var adjacent = tile.AdjacentTiles[i];
// TODO ATMOS handle adjacent being null.
if (adjacent == null || adjacent.ThermalConductivity == 0f)
continue;
if(adjacent.ArchivedCycle < gridAtmosphere.UpdateCounter)
Archive(adjacent, gridAtmosphere.UpdateCounter);
NeighborConductWithSource(gridAtmosphere, adjacent, tile);
ConsiderSuperconductivity(gridAtmosphere, adjacent);
}
RadiateToSpace(tile);
FinishSuperconduction(gridAtmosphere, tile);
}
private AtmosDirection ConductivityDirections(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile)
{
if(tile.Air == null)
{
if(tile.ArchivedCycle < gridAtmosphere.UpdateCounter)
Archive(tile, gridAtmosphere.UpdateCounter);
return AtmosDirection.All;
}
// TODO ATMOS check if this is correct
return AtmosDirection.All;
}
public bool ConsiderSuperconductivity(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile)
{
if (tile.ThermalConductivity == 0f || !Superconduction)
return false;
gridAtmosphere.SuperconductivityTiles.Add(tile);
return true;
}
public bool ConsiderSuperconductivity(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile, bool starting)
{
if (!Superconduction)
return false;
if (tile.Air == null || tile.Air.Temperature < (starting
? Atmospherics.MinimumTemperatureStartSuperConduction
: Atmospherics.MinimumTemperatureForSuperconduction))
return false;
return !(GetHeatCapacity(tile.Air) < Atmospherics.MCellWithRatio)
&& ConsiderSuperconductivity(gridAtmosphere, tile);
}
public void FinishSuperconduction(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile)
{
// Conduct with air on my tile if I have it
if (tile.Air != null)
{
tile.Temperature = TemperatureShare(tile, tile.ThermalConductivity, tile.Temperature, tile.HeatCapacity);
}
FinishSuperconduction(gridAtmosphere, tile, tile.Air?.Temperature ?? tile.Temperature);
}
public void FinishSuperconduction(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile, float temperature)
{
// Make sure it's still hot enough to continue conducting.
if (temperature < Atmospherics.MinimumTemperatureForSuperconduction)
{
gridAtmosphere.SuperconductivityTiles.Remove(tile);
}
}
public void NeighborConductWithSource(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile, TileAtmosphere other)
{
if (tile.Air == null)
{
// TODO ATMOS: why does this need to check if a tile exists if it doesn't use the tile?
if (TryComp<MapGridComponent>(other.GridIndex, out var grid)
&& _mapSystem.TryGetTileRef(other.GridIndex, grid, other.GridIndices, out var _))
{
TemperatureShareOpenToSolid(other, tile);
}
else
{
TemperatureShareMutualSolid(other, tile, tile.ThermalConductivity);
}
// TODO ATMOS: tile.TemperatureExpose(null, tile.Temperature, gridAtmosphere.GetVolumeForCells(1));
return;
}
if (other.Air != null)
{
TemperatureShare(other, tile, Atmospherics.WindowHeatTransferCoefficient);
}
else
{
TemperatureShareOpenToSolid(tile, other);
}
AddActiveTile(gridAtmosphere, tile);
}
private void TemperatureShareOpenToSolid(TileAtmosphere tile, TileAtmosphere other)
{
if (tile.Air == null)
return;
other.Temperature = TemperatureShare(tile, other.ThermalConductivity, other.Temperature, other.HeatCapacity);
}
private void TemperatureShareMutualSolid(TileAtmosphere tile, TileAtmosphere other, float conductionCoefficient)
{
if (tile.AirArchived == null || other.AirArchived == null)
return;
var deltaTemperature = (tile.AirArchived.Temperature - other.AirArchived.Temperature);
if (MathF.Abs(deltaTemperature) > Atmospherics.MinimumTemperatureDeltaToConsider
&& tile.HeatCapacity != 0f && other.HeatCapacity != 0f)
{
var heat = conductionCoefficient * deltaTemperature *
(tile.HeatCapacity * other.HeatCapacity / (tile.HeatCapacity + other.HeatCapacity));
tile.Temperature -= heat / tile.HeatCapacity;
other.Temperature += heat / other.HeatCapacity;
}
}
public void RadiateToSpace(TileAtmosphere tile)
{
if (tile.AirArchived == null)
return;
// Considering 0ºC as the break even point for radiation in and out.
if (tile.Temperature > Atmospherics.T0C)
{
// Hardcoded space temperature.
var deltaTemperature = (tile.AirArchived.Temperature - Atmospherics.TCMB);
if ((tile.HeatCapacity > 0) && (MathF.Abs(deltaTemperature) > Atmospherics.MinimumTemperatureDeltaToConsider))
{
var heat = tile.ThermalConductivity * deltaTemperature * (tile.HeatCapacity *
Atmospherics.HeatCapacityVacuum / (tile.HeatCapacity + Atmospherics.HeatCapacityVacuum));
tile.Temperature -= heat;
}
}
}
}
}