90 lines
3.9 KiB
C#
90 lines
3.9 KiB
C#
using Content.Server.Atmos.EntitySystems;
|
|
using Content.Server.Atmos.Piping.Binary.Components;
|
|
using Content.Server.Atmos.Piping.Components;
|
|
using Content.Server.NodeContainer;
|
|
using Content.Server.NodeContainer.EntitySystems;
|
|
using Content.Server.NodeContainer.Nodes;
|
|
using Content.Shared.Atmos;
|
|
using Content.Shared.Examine;
|
|
using JetBrains.Annotations;
|
|
|
|
namespace Content.Server.Atmos.Piping.Binary.EntitySystems
|
|
{
|
|
[UsedImplicitly]
|
|
public sealed class GasPassiveGateSystem : EntitySystem
|
|
{
|
|
[Dependency] private readonly AtmosphereSystem _atmosphereSystem = default!;
|
|
[Dependency] private readonly NodeContainerSystem _nodeContainer = default!;
|
|
|
|
public override void Initialize()
|
|
{
|
|
base.Initialize();
|
|
|
|
SubscribeLocalEvent<GasPassiveGateComponent, AtmosDeviceUpdateEvent>(OnPassiveGateUpdated);
|
|
SubscribeLocalEvent<GasPassiveGateComponent, ExaminedEvent>(OnExamined);
|
|
}
|
|
|
|
private void OnPassiveGateUpdated(EntityUid uid, GasPassiveGateComponent gate, ref AtmosDeviceUpdateEvent args)
|
|
{
|
|
if (!_nodeContainer.TryGetNodes(uid, gate.InletName, gate.OutletName, out PipeNode? inlet, out PipeNode? outlet))
|
|
return;
|
|
|
|
var n1 = inlet.Air.TotalMoles;
|
|
var n2 = outlet.Air.TotalMoles;
|
|
var P1 = inlet.Air.Pressure;
|
|
var P2 = outlet.Air.Pressure;
|
|
var V1 = inlet.Air.Volume;
|
|
var V2 = outlet.Air.Volume;
|
|
var T1 = inlet.Air.Temperature;
|
|
var T2 = outlet.Air.Temperature;
|
|
var pressureDelta = P1 - P2;
|
|
|
|
float dt = args.dt;
|
|
float dV = 0;
|
|
var denom = (T1*V2 + T2*V1);
|
|
|
|
if (pressureDelta > 0 && P1 > 0 && denom > 0)
|
|
{
|
|
// Calculate the number of moles to transfer to equalize the final pressure of
|
|
// both sides of the valve. You can derive this equation yourself by solving
|
|
// the equations:
|
|
//
|
|
// P_inlet,final = P_outlet,final (pressure equilibrium)
|
|
// n_inlet,initial + n_outlet,initial = n_inlet,final + n_outlet,final (mass conservation)
|
|
//
|
|
// These simplifying assumptions allow an easy closed-form solution:
|
|
//
|
|
// T_inlet,initial = T_inlet,final
|
|
// T_outlet,initial = T_outlet,final
|
|
//
|
|
// If you don't want to push through the math, just know that this behaves like a
|
|
// pump that can equalize pressure instantly, i.e. much faster than pressure or
|
|
// volume pumps.
|
|
var transferMoles = n1 - (n1+n2)*T2*V1 / denom;
|
|
|
|
// Get the volume transfered to update our flow meter.
|
|
// When you remove x from one side and add x to the other the total difference is 2x.
|
|
// Also account for atmos speedup so that measured flow rate matches the setting on the volume pump.
|
|
dV = 2*transferMoles*Atmospherics.R*T1/P1 / _atmosphereSystem.Speedup;
|
|
|
|
// Actually transfer the gas.
|
|
_atmosphereSystem.Merge(outlet.Air, inlet.Air.Remove(transferMoles));
|
|
}
|
|
|
|
// Update transfer rate with an exponential moving average.
|
|
var tau = 1; // Time constant (averaging time) in seconds
|
|
var a = dt/tau;
|
|
gate.FlowRate = a*dV/tau + (1-a)*gate.FlowRate; // in L/sec
|
|
}
|
|
|
|
private void OnExamined(Entity<GasPassiveGateComponent> gate, ref ExaminedEvent args)
|
|
{
|
|
if (!Comp<TransformComponent>(gate).Anchored || !args.IsInDetailsRange) // Not anchored? Out of range? No status.
|
|
return;
|
|
|
|
var str = Loc.GetString("gas-passive-gate-examined", ("flowRate", $"{gate.Comp.FlowRate:0.#}"));
|
|
args.PushMarkup(str);
|
|
}
|
|
}
|
|
}
|