Files
tbd-station-14/Content.Server/Atmos/EntitySystems/AtmosphereSystem.Superconductivity.cs
Vera Aguilera Puerto 94fa6efefb Misc Atmos Improvements (#5613)
* Revert "Remove atmos archiving."

This reverts commit 7fa10bd17b.

* Explosive Depressurization now brings tiles down to TCMB.

* Tiles now specify heat capacity.

* Do not serialize archived gas mixture values.

* Remove bad idea

* dumb typo

* Space gas mixtures now have a harcoded heat capacity.
This is a bit of a hack, but rooms exposed to space now cool down properly when monstermos is disabled.
Huge thanks to @LemonInTheDark for helping me with this!

* Clean up heat capacity methods

* Better logging based on the original monstermos' logging

* Comment explosive depressurization hack better
2021-11-30 11:42:48 +01:00

161 lines
6.1 KiB
C#

using System;
using Content.Server.Atmos.Components;
using Content.Shared.Atmos;
namespace Content.Server.Atmos.EntitySystems
{
public partial class AtmosphereSystem
{
private void Superconduct(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile)
{
var directions = ConductivityDirections(gridAtmosphere, tile);
for(var i = 0; i < Atmospherics.Directions; i++)
{
var direction = (AtmosDirection) (1 << i);
if (!directions.IsFlagSet(direction)) continue;
var adjacent = tile.AdjacentTiles[direction.ToIndex()];
// TODO ATMOS handle adjacent being null.
if (adjacent == null || adjacent.ThermalConductivity == 0f)
continue;
if(adjacent.ArchivedCycle < gridAtmosphere.UpdateCounter)
Archive(adjacent, gridAtmosphere.UpdateCounter);
NeighborConductWithSource(gridAtmosphere, adjacent, tile);
ConsiderSuperconductivity(gridAtmosphere, adjacent);
}
RadiateToSpace(tile);
FinishSuperconduction(gridAtmosphere, tile);
}
private AtmosDirection ConductivityDirections(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile)
{
if(tile.Air == null)
{
if(tile.ArchivedCycle < gridAtmosphere.UpdateCounter)
Archive(tile, gridAtmosphere.UpdateCounter);
return AtmosDirection.All;
}
// TODO ATMOS check if this is correct
return AtmosDirection.All;
}
public bool ConsiderSuperconductivity(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile)
{
if (tile.ThermalConductivity == 0f || !Superconduction)
return false;
gridAtmosphere.SuperconductivityTiles.Add(tile);
return true;
}
public bool ConsiderSuperconductivity(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile, bool starting)
{
if (!Superconduction)
return false;
if (tile.Air == null || tile.Air.Temperature < (starting
? Atmospherics.MinimumTemperatureStartSuperConduction
: Atmospherics.MinimumTemperatureForSuperconduction))
return false;
return !(GetHeatCapacity(tile.Air) < Atmospherics.MCellWithRatio)
&& ConsiderSuperconductivity(gridAtmosphere, tile);
}
public void FinishSuperconduction(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile)
{
// Conduct with air on my tile if I have it
if (tile.Air != null)
{
tile.Temperature = TemperatureShare(tile.Air, tile.ThermalConductivity, tile.Temperature, tile.HeatCapacity);
}
FinishSuperconduction(gridAtmosphere, tile, tile.Air?.Temperature ?? tile.Temperature);
}
public void FinishSuperconduction(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile, float temperature)
{
// Make sure it's still hot enough to continue conducting.
if (temperature < Atmospherics.MinimumTemperatureForSuperconduction)
{
gridAtmosphere.SuperconductivityTiles.Remove(tile);
}
}
public void NeighborConductWithSource(GridAtmosphereComponent gridAtmosphere, TileAtmosphere tile, TileAtmosphere other)
{
if (tile.Air == null)
{
if (other.Tile != null)
{
TemperatureShareOpenToSolid(other, tile);
}
else
{
TemperatureShareMutualSolid(other, tile, tile.ThermalConductivity);
}
// TODO ATMOS: tile.TemperatureExpose(null, tile.Temperature, gridAtmosphere.GetVolumeForCells(1));
return;
}
if (other.Air != null)
{
TemperatureShare(other.Air, tile.Air, Atmospherics.WindowHeatTransferCoefficient);
}
else
{
TemperatureShareOpenToSolid(tile, other);
}
AddActiveTile(gridAtmosphere, tile);
}
private void TemperatureShareOpenToSolid(TileAtmosphere tile, TileAtmosphere other)
{
if (tile.Air == null)
return;
other.Temperature = TemperatureShare(tile.Air, other.ThermalConductivity, other.Temperature, other.HeatCapacity);
}
private void TemperatureShareMutualSolid(TileAtmosphere tile, TileAtmosphere other, float conductionCoefficient)
{
var deltaTemperature = (tile.TemperatureArchived - other.TemperatureArchived);
if (MathF.Abs(deltaTemperature) > Atmospherics.MinimumTemperatureDeltaToConsider
&& tile.HeatCapacity != 0f && other.HeatCapacity != 0f)
{
var heat = conductionCoefficient * deltaTemperature *
(tile.HeatCapacity * other.HeatCapacity / (tile.HeatCapacity + other.HeatCapacity));
tile.Temperature -= heat / tile.HeatCapacity;
other.Temperature += heat / other.HeatCapacity;
}
}
public void RadiateToSpace(TileAtmosphere tile)
{
// Considering 0ºC as the break even point for radiation in and out.
if (tile.Temperature > Atmospherics.T0C)
{
// Hardcoded space temperature.
var deltaTemperature = (tile.TemperatureArchived - Atmospherics.TCMB);
if ((tile.HeatCapacity > 0) && (MathF.Abs(deltaTemperature) > Atmospherics.MinimumTemperatureDeltaToConsider))
{
var heat = tile.ThermalConductivity * deltaTemperature * (tile.HeatCapacity *
Atmospherics.HeatCapacityVacuum / (tile.HeatCapacity + Atmospherics.HeatCapacityVacuum));
tile.Temperature -= heat;
}
}
}
}
}