Make passive gates great (#9816)

This commit is contained in:
Kevin Zheng
2022-07-30 20:00:34 -07:00
committed by GitHub
parent b445c5c3f9
commit da11acd8c3
3 changed files with 52 additions and 26 deletions

View File

@@ -5,17 +5,6 @@ namespace Content.Server.Atmos.Piping.Binary.Components
[RegisterComponent]
public sealed class GasPassiveGateComponent : Component
{
[DataField("enabled")]
[ViewVariables(VVAccess.ReadWrite)]
public bool Enabled { get; set; } = true;
/// <summary>
/// This is the minimum difference needed to overcome the friction in the mechanism.
/// </summary>
[ViewVariables(VVAccess.ReadWrite)]
[DataField("frictionDifference")]
public float FrictionPressureDifference { get; set; } = 10f;
[ViewVariables(VVAccess.ReadWrite)]
[DataField("inlet")]
public string InletName { get; set; } = "inlet";
@@ -24,8 +13,8 @@ namespace Content.Server.Atmos.Piping.Binary.Components
[DataField("outlet")]
public string OutletName { get; set; } = "outlet";
[ViewVariables(VVAccess.ReadWrite)]
[DataField("targetPressure")]
public float TargetPressure { get; set; } = Atmospherics.OneAtmosphere;
[ViewVariables(VVAccess.ReadOnly)]
[DataField("flowRate")]
public float FlowRate { get; set; } = 0;
}
}

View File

@@ -4,6 +4,7 @@ using Content.Server.Atmos.Piping.Components;
using Content.Server.NodeContainer;
using Content.Server.NodeContainer.Nodes;
using Content.Shared.Atmos;
using Content.Shared.Examine;
using JetBrains.Annotations;
namespace Content.Server.Atmos.Piping.Binary.EntitySystems
@@ -12,19 +13,18 @@ namespace Content.Server.Atmos.Piping.Binary.EntitySystems
public sealed class GasPassiveGateSystem : EntitySystem
{
[Dependency] private readonly AtmosphereSystem _atmosphereSystem = default!;
[Dependency] private readonly ExamineSystemShared _examineSystem = default!;
public override void Initialize()
{
base.Initialize();
SubscribeLocalEvent<GasPassiveGateComponent, AtmosDeviceUpdateEvent>(OnPassiveGateUpdated);
SubscribeLocalEvent<GasPassiveGateComponent, ExaminedEvent>(OnExamined);
}
private void OnPassiveGateUpdated(EntityUid uid, GasPassiveGateComponent gate, AtmosDeviceUpdateEvent args)
{
if (!gate.Enabled)
return;
if (!EntityManager.TryGetComponent(uid, out NodeContainerComponent? nodeContainer))
return;
@@ -32,23 +32,59 @@ namespace Content.Server.Atmos.Piping.Binary.EntitySystems
|| !nodeContainer.TryGetNode(gate.OutletName, out PipeNode? outlet))
return;
var outputStartingPressure = outlet.Air.Pressure;
var inputStartingPressure = inlet.Air.Pressure;
var n1 = inlet.Air.TotalMoles;
var n2 = outlet.Air.TotalMoles;
var P1 = inlet.Air.Pressure;
var P2 = outlet.Air.Pressure;
var V1 = inlet.Air.Volume;
var V2 = outlet.Air.Volume;
var T1 = inlet.Air.Temperature;
var T2 = outlet.Air.Temperature;
var pressureDelta = P1 - P2;
if (outputStartingPressure >= MathF.Min(gate.TargetPressure, inputStartingPressure - gate.FrictionPressureDifference))
return; // No need to pump gas, target reached or input pressure too low.
float dt = 1/_atmosphereSystem.AtmosTickRate;
float dV = 0;
var denom = (T1*V2 + T2*V1);
if (inlet.Air.TotalMoles > 0 && inlet.Air.Temperature > 0)
if (pressureDelta > 0 && P1 > 0 && denom > 0)
{
// We calculate the necessary moles to transfer using our good ol' friend PV=nRT.
var pressureDelta = MathF.Min(gate.TargetPressure - outputStartingPressure, (inputStartingPressure - outputStartingPressure)/2);
// We can't have a pressure delta that would cause outlet pressure > inlet pressure.
// Calculate the number of moles to transfer to equalize the final pressure of
// both sides of the valve. You can derive this equation yourself by solving
// the equations:
//
// P_inlet,final = P_outlet,final (pressure equilibrium)
// n_inlet,initial + n_outlet,initial = n_inlet,final + n_outlet,final (mass conservation)
//
// These simplifying assumptions allow an easy closed-form solution:
//
// T_inlet,initial = T_inlet,final
// T_outlet,initial = T_outlet,final
//
// If you don't want to push through the math, just know that this behaves like a
// pump that can equalize pressure instantly, i.e. much faster than pressure or
// volume pumps.
var transferMoles = n1 - (n1+n2)*T2*V1 / denom;
var transferMoles = pressureDelta * outlet.Air.Volume / (inlet.Air.Temperature * Atmospherics.R);
// Get the volume transfered to update our flow meter.
dV = n1*Atmospherics.R*T1/P1;
// Actually transfer the gas.
_atmosphereSystem.Merge(outlet.Air, inlet.Air.Remove(transferMoles));
}
// Update transfer rate with an exponential moving average.
var tau = 1; // Time constant (averaging time) in seconds
var a = dt/tau;
gate.FlowRate = a*dV/tau + (1-a)*gate.FlowRate; // in L/sec
}
private void OnExamined(EntityUid uid, GasPassiveGateComponent gate, ExaminedEvent args)
{
if (!EntityManager.GetComponent<TransformComponent>(gate.Owner).Anchored || !args.IsInDetailsRange) // Not anchored? Out of range? No status.
return;
var str = Loc.GetString("gas-passive-gate-examined", ("flowRate", $"{gate.FlowRate:0.#}"));
args.PushMarkup(str);
}
}
}

View File

@@ -0,0 +1 @@
gas-passive-gate-examined = The flow rate meter indicates [color=lightblue]{$flowRate} liters/sec[/color].