Plasma fueled radiation collectors (#19598)

* Fixes issue with solution regenerators

* Update Solution.cs

Removed excess whitespace

* Undid file scoping to make this easier to review

* Initial prototype

* Adjusted coefficients

* Removed unintentional changes from another PR

* Undid unintentional change

* Undid unintentional change

* Added temperature modifier to power production

* Guidebook entry and radiation collector low pressure warning

* Reviewer requested changes
This commit is contained in:
chromiumboy
2023-09-04 08:11:57 -05:00
committed by GitHub
parent cebc3f28f3
commit 05e9d2e33a
6 changed files with 184 additions and 9 deletions

View File

@@ -1,4 +1,7 @@
using Content.Server.Singularity.EntitySystems;
using Content.Shared.Atmos;
using Content.Shared.Atmos.Prototypes;
using Robust.Shared.Serialization.TypeSerializers.Implementations.Custom.Prototype;
namespace Content.Server.Singularity.Components
{
@@ -33,5 +36,55 @@ namespace Content.Server.Singularity.Components
/// Timestamp when machine can be deactivated again.
/// </summary>
public TimeSpan CoolDownEnd;
/// <summary>
/// List of gases that will react to the radiation passing through the collector
/// </summary>
[DataField("radiationReactiveGases")]
[ViewVariables(VVAccess.ReadWrite)]
public List<RadiationReactiveGas>? RadiationReactiveGases;
}
/// <summary>
/// Describes how a gas reacts to the collected radiation
/// </summary>
[DataDefinition]
public sealed partial class RadiationReactiveGas
{
/// <summary>
/// The reactant gas
/// </summary>
[DataField("reactantPrototype", required: true)]
public Gas Reactant = Gas.Plasma;
/// <summary>
/// Multipier for the amount of power produced by the radiation collector when using this gas
/// </summary>
[DataField("powerGenerationEfficiency")]
public float PowerGenerationEfficiency = 1f;
/// <summary>
/// Controls the rate (molar percentage per rad) at which the reactant breaks down when exposed to radiation
/// </summary>
/// /// <remarks>
/// Set to zero if the reactant does not deplete
/// </remarks>
[DataField("reactantBreakdownRate")]
public float ReactantBreakdownRate = 1f;
/// <summary>
/// A byproduct gas that is generated when the reactant breaks down
/// </summary>
/// <remarks>
/// Leave null if the reactant no byproduct gas is to be formed
/// </remarks>
[DataField("byproductPrototype")]
public Gas? Byproduct = null;
/// <summary>
/// The molar ratio of the byproduct gas generated from the reactant gas
/// </summary>
[DataField("molarRatio")]
public float MolarRatio = 1f;
}
}

View File

@@ -4,9 +4,12 @@ using Content.Shared.Singularity.Components;
using Content.Server.Popups;
using Content.Server.Power.Components;
using Content.Shared.Radiation.Events;
using Robust.Server.GameObjects;
using Robust.Shared.Timing;
using Robust.Shared.Player;
using Robust.Shared.Containers;
using Content.Server.Atmos.Components;
using Content.Shared.Examine;
using Content.Server.Atmos;
using System.Diagnostics.CodeAnalysis;
namespace Content.Server.Singularity.EntitySystems
{
@@ -15,19 +18,36 @@ namespace Content.Server.Singularity.EntitySystems
[Dependency] private readonly IGameTiming _gameTiming = default!;
[Dependency] private readonly PopupSystem _popupSystem = default!;
[Dependency] private readonly SharedAppearanceSystem _appearance = default!;
[Dependency] private readonly SharedContainerSystem _containerSystem = default!;
public override void Initialize()
{
base.Initialize();
SubscribeLocalEvent<RadiationCollectorComponent, InteractHandEvent>(OnInteractHand);
SubscribeLocalEvent<RadiationCollectorComponent, OnIrradiatedEvent>(OnRadiation);
SubscribeLocalEvent<RadiationCollectorComponent, ExaminedEvent>(OnExamined);
SubscribeLocalEvent<RadiationCollectorComponent, GasAnalyzerScanEvent>(OnAnalyzed);
}
private bool TryGetLoadedGasTank(EntityUid uid, [NotNullWhen(true)] out GasTankComponent? gasTankComponent)
{
gasTankComponent = null;
var container = _containerSystem.EnsureContainer<ContainerSlot>(uid, "GasTank");
if (container.ContainedEntity == null)
return false;
if (!EntityManager.TryGetComponent(container.ContainedEntity, out gasTankComponent))
return false;
return true;
}
private void OnInteractHand(EntityUid uid, RadiationCollectorComponent component, InteractHandEvent args)
{
var curTime = _gameTiming.CurTime;
if(curTime < component.CoolDownEnd)
if (curTime < component.CoolDownEnd)
return;
ToggleCollector(uid, args.User, component);
@@ -36,7 +56,37 @@ namespace Content.Server.Singularity.EntitySystems
private void OnRadiation(EntityUid uid, RadiationCollectorComponent component, OnIrradiatedEvent args)
{
if (!component.Enabled) return;
if (!component.Enabled || component.RadiationReactiveGases == null)
return;
if (!TryGetLoadedGasTank(uid, out var gasTankComponent))
return;
var charge = 0f;
foreach (var gas in component.RadiationReactiveGases)
{
float reactantMol = gasTankComponent.Air.GetMoles(gas.Reactant);
float delta = args.TotalRads * reactantMol * gas.ReactantBreakdownRate;
// We need to offset the huge power gains possible when using very cold gases
// (they allow you to have a much higher molar concentrations of gas in the tank).
// Hence power output is modified using the Michaelis-Menten equation,
// it will heavily penalise the power output of low temperature reactions:
// 300K = 100% power output, 73K = 49% power output, 1K = 1% power output
float temperatureMod = 1.5f * gasTankComponent.Air.Temperature / (150f + gasTankComponent.Air.Temperature);
charge += args.TotalRads * reactantMol * component.ChargeModifier * gas.PowerGenerationEfficiency * temperatureMod;
if (delta > 0)
{
gasTankComponent.Air.AdjustMoles(gas.Reactant, -Math.Min(delta, reactantMol));
}
if (gas.Byproduct != null)
{
gasTankComponent.Air.AdjustMoles((int) gas.Byproduct, delta * gas.MolarRatio);
}
}
// No idea if this is even vaguely accurate to the previous logic.
// The maths is copied from that logic even though it works differently.
@@ -45,15 +95,39 @@ namespace Content.Server.Singularity.EntitySystems
// This still won't stop things being potentially hilariously unbalanced though.
if (TryComp<BatteryComponent>(uid, out var batteryComponent))
{
var charge = args.TotalRads * component.ChargeModifier;
batteryComponent.CurrentCharge += charge;
}
}
private void OnExamined(EntityUid uid, RadiationCollectorComponent component, ExaminedEvent args)
{
if (!TryGetLoadedGasTank(uid, out var gasTankComponent))
{
args.PushMarkup(Loc.GetString("power-radiation-collector-gas-tank-missing"));
return;
}
args.PushMarkup(Loc.GetString("power-radiation-collector-gas-tank-present"));
if (gasTankComponent.IsLowPressure)
{
args.PushMarkup(Loc.GetString("power-radiation-collector-gas-tank-low-pressure"));
}
}
private void OnAnalyzed(EntityUid uid, RadiationCollectorComponent component, GasAnalyzerScanEvent args)
{
if (!TryGetLoadedGasTank(uid, out var gasTankComponent))
return;
args.GasMixtures = new Dictionary<string, GasMixture?> { { Name(uid), gasTankComponent.Air } };
}
public void ToggleCollector(EntityUid uid, EntityUid? user = null, RadiationCollectorComponent? component = null)
{
if (!Resolve(uid, ref component))
return;
SetCollectorEnabled(uid, !component.Enabled, user, component);
}
@@ -61,6 +135,7 @@ namespace Content.Server.Singularity.EntitySystems
{
if (!Resolve(uid, ref component))
return;
component.Enabled = enabled;
// Show message to the player
@@ -68,7 +143,6 @@ namespace Content.Server.Singularity.EntitySystems
{
var msg = component.Enabled ? "radiation-collector-component-use-on" : "radiation-collector-component-use-off";
_popupSystem.PopupEntity(Loc.GetString(msg), uid);
}
// Update appearance

View File

@@ -0,0 +1,3 @@
power-radiation-collector-gas-tank-missing = [color=red]No gas tank attached.[/color]
power-radiation-collector-gas-tank-present = A gas tank is [color=darkgreen]connected[/color].
power-radiation-collector-gas-tank-low-pressure = The gas tank [color=orange]low pressure[/color] light is on.

View File

@@ -42,7 +42,7 @@
components:
- type: StorageFill
contents:
- id: RadiationCollector
- id: RadiationCollectorFullTank
- type: entity
id: CrateEngineeringSingularityContainment

View File

@@ -1,7 +1,8 @@
- type: entity
id: RadiationCollector
name: radiation collector
description: A machine that collects radiation and turns it into power.
suffix: Empty tank
description: A machine that collects radiation and turns it into power. Requires plasma gas to function.
placement:
mode: SnapgridCenter
components:
@@ -38,6 +39,12 @@
!type:CableDeviceNode
nodeGroupID: HVPower
- type: RadiationCollector
chargeModifier: 7500
radiationReactiveGases:
- reactantPrototype: Plasma
powerGenerationEfficiency: 1
reactantBreakdownRate: 0.0002
byproductPrototype: Tritium
# Note that this doesn't matter too much (see next comment)
# However it does act as a cap on power receivable via the collector.
- type: Battery
@@ -55,3 +62,38 @@
supplyRampTolerance: 1000000000
- type: GuideHelp
guides: [ Singularity, Power ]
- type: ContainerContainer
containers:
GasTank: !type:ContainerSlot {}
- type: ItemSlots
slots:
GasTank:
startingItem: PlasmaTank
whitelist:
components:
- GasTank
- type: entity
id: RadiationCollectorNoTank
suffix: No tank
parent: RadiationCollector
components:
- type: ItemSlots
slots:
GasTank:
whitelist:
components:
- GasTank
- type: entity
id: RadiationCollectorFullTank
suffix: Filled tank
parent: RadiationCollector
components:
- type: ItemSlots
slots:
GasTank:
startingItem: PlasmaTankFilled
whitelist:
components:
- GasTank

View File

@@ -28,8 +28,11 @@ Emitter lasers and containment field can cause damage, avoid touching them when
## Radition collectors
<Box>
<GuideEntityEmbed Entity="RadiationCollector"/>
<GuideEntityEmbed Entity="PlasmaTank"/>
</Box>
They connect to HV cables and generate power from nearby radiation sources when turned on.
Radiation collectors require a tank full of gaseous plasma in order to operate.
Continous radiation exposure will gradually convert the stored plasma into tritium, so replace depleted plasma tanks with fresh ones to maintain a high power output.
## Particle accelerator